66 research outputs found

    Enseñanza centrada en el aprendizaje e implicación del estudiante en estudiantes universitarios

    Get PDF
    Los datos que se presentan son un avance de resultados de una investigación de tres años que pretende evaluar el impacto de metodologías innovadoras, centradas en el aprendizaje, sobre el modo de aprender de los estudiantes universitarios y sobre su rendimiento

    Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream

    Full text link
    Alkylation of aromatics with HMF is a new route for the synthesis of biofuels. Alkylation of toluene with HMF has been studied in the presence of large pore (HBeta, USY and Mordenite), delaminated zeolites as well as on mesoporous aluminosilicates. In all cases a mixture of monoalkylated products of 5-(o-, m- and p-methyl)benzylfuran-2-carbaldehyde and OBMF coming from self etherification of HMF were obtained. Large pore 3D (USY) and especially 2D (ITQ-2) zeolites are active and selective catalysts for this transformation. The alkylation reaction was extended successfully to other substituted benzenes as well as to a heavy reformate mixture as source aromatic compounds, achieving 91% yield of alkylated products with 93% selectivity. Further hydrodeoxygenation of alkylated compounds in a fixed bed continuous reactor was performed using Pt/C and Pt/TiO2 as catalysts allowing to obtain a hydrocarbon mixture containing alkylcyclohexane compounds that can be used as high quality kerosene.Financial support by Consolider-Ingenio 2010 (project MULTICAT), Spanish MICINN Project CTQ-2011-27550), Generalitat Valenciana (Prometeo program) and Program Severo Ochoa are gratefully acknowledged. This work was supported by Consolider. KSA is grateful to ITQ for a doctoral grant.Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2015). Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy and Environmental Science. 8(1):317-331. https://doi.org/10.1039/c4ee03194fS31733181Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360dCliment, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492bCheng, Y.-T., Jae, J., Shi, J., Fan, W., & Huber, G. W. (2011). Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angewandte Chemie International Edition, 51(6), 1387-1390. doi:10.1002/anie.201107390Gullón, P., Romaní, A., Vila, C., Garrote, G., & Parajó, J. C. (2011). Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels, Bioproducts and Biorefining, 6(2), 219-232. doi:10.1002/bbb.339Domínguez de María, P. (2013). Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. Journal of Chemical Technology & Biotechnology, 89(1), 11-18. doi:10.1002/jctb.4201T. Werpy and G. R.Petersen, Top Value Added Chemicals from Biomass. Volume I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas, U.S.D. Energy, 2004Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014cCliment, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639dRosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401dTong, X., Ma, Y., & Li, Y. (2010). Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 385(1-2), 1-13. doi:10.1016/j.apcata.2010.06.049Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499-1597. doi:10.1021/cr300182kTeong, S. P., Yi, G., & Zhang, Y. (2014). Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 16(4), 2015. doi:10.1039/c3gc42018cNakamura, Y., & Morikawa, S. (1980). The Dehydration of D-Fructose to 5-Hydroxymethyl-2-furaldehyde. Bulletin of the Chemical Society of Japan, 53(12), 3705-3706. doi:10.1246/bcsj.53.3705Roman-Leshkov, Y. (2006). Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 312(5782), 1933-1937. doi:10.1126/science.1126337Saha, B., & Abu-Omar, M. M. (2014). Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem., 16(1), 24-38. doi:10.1039/c3gc41324aS. Frenzel , S.Peters, T.Rose and M.Kunz, Industrial Sucrose, in Sustainable Solutions for Modern Economies, ed. R. Höfer, RSC Green Chemistry, No 4, RSC Publ., Cambridge, 2009, pp. 264–299Biochem AVA (2014) First Industrial Production for Renewable 5-HMF, http://www.ava-biochem.com/media/downloads-EN/press-releases/First-Industrial-Production-For-Renewable-5-HMF.pdf, accessed April 16, 2014Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition, 46(38), 7164-7183. doi:10.1002/anie.200604274Bond, J. Q., Alonso, D. M., Wang, D., West, R. M., & Dumesic, J. A. (2010). Integrated Catalytic Conversion of  -Valerolactone to Liquid Alkenes for Transportation Fuels. Science, 327(5969), 1110-1114. doi:10.1126/science.1184362Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103Serrano-Ruiz, J. C., Braden, D. J., West, R. M., & Dumesic, J. A. (2010). Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Applied Catalysis B: Environmental, 100(1-2), 184-189. doi:10.1016/j.apcatb.2010.07.029Pulido, A., Oliver-Tomas, B., Renz, M., Boronat, M., & Corma, A. (2012). Ketonic Decarboxylation Reaction Mechanism: A Combined Experimental and DFT Study. ChemSusChem, 6(1), 141-151. doi:10.1002/cssc.201200419Kunkes, E. L., Simonetti, D. A., West, R. M., Serrano-Ruiz, J. C., Gartner, C. A., & Dumesic, J. A. (2008). Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes. Science, 322(5900), 417-421. doi:10.1126/science.1159210Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508Corma, A., de la Torre, O., & Renz, M. (2011). High-Quality Diesel from Hexose- and Pentose-Derived Biomass Platform Molecules. ChemSusChem, 4(11), 1574-1577. doi:10.1002/cssc.201100296Corma, A., de la Torre, O., & Renz, M. (2012). Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy & Environmental Science, 5(4), 6328. doi:10.1039/c2ee02778jHuber, G. W. (2005). Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science, 308(5727), 1446-1450. doi:10.1126/science.1111166Barrett, C. J., Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2006). Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Applied Catalysis B: Environmental, 66(1-2), 111-118. doi:10.1016/j.apcatb.2006.03.001Iovel, I., Mertins, K., Kischel, J., Zapf, A., & Beller, M. (2005). An Efficient and General Iron-Catalyzed Arylation of Benzyl Alcohols and Benzyl Carboxylates. Angewandte Chemie International Edition, 44(25), 3913-3917. doi:10.1002/anie.200462522Zhou, X., & Rauchfuss, T. B. (2012). Production of Hybrid Diesel Fuel Precursors from Carbohydrates and Petrochemicals Using Formic Acid as a Reactive Solvent. ChemSusChem, 6(2), 383-388. doi:10.1002/cssc.201200718Onorato, A., Pavlik, C., Invernale, M. A., Berghorn, I. D., Sotzing, G. A., Morton, M. D., & Smith, M. B. (2011). Polymer-mediated cyclodehydration of alditols and ketohexoses. Carbohydrate Research, 346(13), 1662-1670. doi:10.1016/j.carres.2011.04.017Bidart, A. M. F., Borges, A. P. S., Nogueira, L., Lachter, E. R., & Mota, C. J. A. (2001). Catalysis Letters, 75(3/4), 155-157. doi:10.1023/a:1016748206714Okumura, K., Nishigaki, K., & Niwa, M. (2001). Prominent catalytic activity of Ga-containing MCM-41 in the Friedel–Crafts alkylation. Microporous and Mesoporous Materials, 44-45, 509-516. doi:10.1016/s1387-1811(01)00228-1KALITA, P., GUPTA, N., & KUMAR, R. (2007). Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce–Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies. Journal of Catalysis, 245(2), 338-347. doi:10.1016/j.jcat.2006.10.022Sun, Y., & Prins, R. (2008). Friedel-Crafts alkylations over hierarchical zeolite catalysts. Applied Catalysis A: General, 336(1-2), 11-16. doi:10.1016/j.apcata.2007.08.015Climent, M. J., Corma, A., García, H., & Primo, J. (1989). Zeolites in organic reactions. Applied Catalysis, 51(1), 113-125. doi:10.1016/s0166-9834(00)80199-2S. Al-Khattaf , M. A.Ali and J.Cejka, Recent Development in Transformation of Aromatic Hydrocarbons over Zeolites, in Zeolites and Catalysis, ed. J. Cejka, A. Corma and S. Zones, Wiley-VCH, Weinheim, 2010, vol. 2, pp. 623–648Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150gGounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731dYamato, T., Hideshima, C., Prakash, G. K. S., & Olah, G. A. (1991). Solid superacid-catalyzed organic synthesis. 4. Perfluorinated resinsulfonic acid (Nafion-H) catalyzed Friedel-Crafts benzylation of benzene and substituted benzenes. The Journal of Organic Chemistry, 56(6), 2089-2091. doi:10.1021/jo00006a023Corma, A., Zicovich-Wilson, C., & Viruela, P. (1994). Orbital-controlled reactions catalysed by zeolites: Electrophilic alkylation of aromatics. Journal of Physical Organic Chemistry, 7(7), 364-370. doi:10.1002/poc.610070706VANDERBEKEN, S., DEJAEGERE, E., TEHRANI, K., PAUL, J., JACOBS, P., BARON, G., & DENAYER, J. (2005). Alkylation of deactivated aromatic compounds on zeolites. Adsorption, deactivation and selectivity effects in the alkylation of bromobenzene and toluene with bifunctional alkylating agents. Journal of Catalysis, 235(1), 128-138. doi:10.1016/j.jcat.2005.06.029PINE, L. (1984). Prediction of cracking catalyst behavior by a zeolite unit cell size model. Journal of Catalysis, 85(2), 466-476. doi:10.1016/0021-9517(84)90235-5Verboekend, D., Vilé, G., & Pérez-Ramírez, J. (2011). Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies. Advanced Functional Materials, 22(5), 916-928. doi:10.1002/adfm.201102411Klinowski, J., Thomas, J. M., Fyfe, C. A., & Gobbi, G. C. (1982). Monitoring of structural changes accompanying ultrastabilization of faujasitic zeolite catalysts. Nature, 296(5857), 533-536. doi:10.1038/296533a0Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910Corma, A., Martı́nez-Soria, V., & Schnoeveld, E. (2000). Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite: Catalytic Behaviour and Kinetic Mechanism. Journal of Catalysis, 192(1), 163-173. doi:10.1006/jcat.2000.2849Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272zDíaz, U., Fornés, V., & Corma, A. (2006). On the mechanism of zeolite growing: Crystallization by seeding with delayered zeolites. Microporous and Mesoporous Materials, 90(1-3), 73-80. doi:10.1016/j.micromeso.2005.09.025Aguilar, J., Pergher, S. B. C., Detoni, C., Corma, A., Melo, F. V., & Sastre, E. (2008). Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catalysis Today, 133-135, 667-672. doi:10.1016/j.cattod.2007.11.057Lugo, H. J., Ragone, G., & Zambrano, J. (1999). Correlations between Octane Numbers and Catalytic Cracking Naphtha Composition. Industrial & Engineering Chemistry Research, 38(5), 2171-2176. doi:10.1021/ie980273rKresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145D. W. Breck and E.Flanigen, Molecular Sieves, Society of Chemical Industry, 1968, p. 47Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.217019012

    Chemicals from Biomass: Synthesis of biologically active furanochalcones by Claisen-Schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones

    Full text link
    Furanochalcones have been synthesized trough the Claisen-Schmidt condensation of acetophenones and 5-hydroxymethylfurfural (HMF) using different solid base catalysts such as MgO, Al/Mg mixed oxide (HTc) with Lewis basic sites, and a hydrated Al/Mg mixed oxide (HTr) with Bronsted basic sites. The three catalysts provide high selectivity in absence of solvent or in the presence of polar solvents such as ethanol or acetonitrile, however catalysts become rapidly deactivated due to the strong adsorption of HMF and the furanochalcone obtained on the catalyst surface. A further increase in solvent polarity by using a mixture ethanol-water allows obtaining high conversion and high selectivity to furanochalcone using HTc and HTr as catalysts. However, MgO becomes rapidly deactivated which was mainly attributed to structural changes on MgO that is in situ rehydrated into Mg(OH)2 with low activity for aldol condensations. When the reaction was performed using the homogeneous NaOH catalyst, it was found that their activity is higher than that of the solid catalyst, but the selectivity of the later is clearly better. The results indicate that the active phase of the Al/Mg mixed oxide (HTc) in the ethanol-water medium corresponds to a partially restored hydrotalcite with basic hydroxyl groups. The HTc sample could be applied to the synthesis of a variety of furanochalcones with excellent success, while the catalyst could be reused several reaction cycles without loss of activity.Financial support by Consolider-Ingenio 2010 (Project MULTICAT), Spanish MICINN Project (CTQ-2015-67592-P), Generalitat Valenciana (Prometeo program) and Program Severo Ochoa are gratefully acknowledged.Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2016). Chemicals from Biomass: Synthesis of biologically active furanochalcones by Claisen-Schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones. Topics in Catalysis. 59(13):1257-1265. doi:10.1007/s11244-016-0646-3S125712655913Werpy T, Petersen GR (2004) Top value added chemicals from biomass. Volume I. Results of screening for potential candidates from sugars and synthesis gas. US Department Energy, Washington, DCBozell JJ, Petersen GR (2010) Green Chem 12:539–554Climent MJ, Corma A, Iborra S (2011) Green Chem 13:520–540Esposito D, Antonietti M (2015) Chem Soc Rev 44:5821–5835Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) Green Chem 13:754–793van Putten RJ, van der Waaal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Chem Rev 113:1499–1597Dhar DH (1981) The Chemistry of chalcones and related compounds. Wiley, New YorkGhosh R, Das A (2014) World J Pharm Pharm Sci 3:578–595Suwito HJM, Kristanti AN, Tri P, Ni N (2014) J Chem Pharm Res 6:1076–1088Shaikh SB, Mujahid S, Tambat N, Salgar K, Nimbale RV (2014) Int J Pharm Res Sch 3:317–329Solomon VR, Lee H (2012) Biomed Pharmacother 66:213–220Ahmet O, Mehlika DA, Zerrin C, Zafer AK (2015) Lett Drug Des Discov 12:607–611Boeck P, Falcao C, Alves B, Leal PC, Yunes RA, Filho VC, Torres-Santos EC, Rossi-Bergmann B (2006) Bioorg Med Chem 14:1538–1545Jin H, Geng Y, Yu Z, Tao K, Hou T (2009) Pestic Biochem Physiol 93:133–137Datta A, Walia S, Parmar BS (2001) J Agric Food Chem 49:4726–4731Konieczny M, Skladanowski A, Lemke K, Pieczykolan J (2011) Patent WO2011009826Robinson SJ, Petzer JP, Petzer A, Bergh JJ, Lourens ACU (2013) Bioorg Med Chem Lett 23:4985–4989Seth D, Hartman RF (2007) US Patent 20070265317Seth D, Hartman RF (2013) US Patent 8552066Quincoces Suarez J, Peseke K, Molina Ruiz R (2006) Patent EP1764363Yadav GD, Yadav AR (2014) RSC Adv 4:63772–63778Climent MJ, Corma A, Iborra S, Velty A (2004) J Catal 221:474–482Subbiah S, Simeonov SP, Esperança JMSS, Rebelo LPN, Afonso CAM (2013) Green Chem 15:2849–2853Albertazzi S, Basile F, Vaccari A (2004) Interface Sci Technol 1:496–546Aramendia MA, Borau V, Jimenez C, Marinas JM, Ruiz JR, Urbano FJ (2000) Mat Lett 46:309–314Climent MJ, Corma A, Iborra S, Marti L (2015) ACS Catal 5:157–166Climent MJ, Corma A, Iborra S, Primo J (1995) J Catal 151:60–66Guida A, Lhouty MH, Tichit D, Figueras F, Geneste P (1997) Appl Catal A 164:251–264Tichit D, Coq B (2003) Cattech 7:206–217Vaccari A, Zicmanis A (2004) Catal Commun 5:145–150Climent MJ, Corma A, Iborra S, Epping K, Velty A (2004) J Catal 225:316–326Climent MJ, Corma A, Iborra S, Mifsud M (2007) J Catal 247:223–230Rao KK, Gravelle M, Valente J, Figueras F (1998) J Catal 173:115–121Tichit D, Lutic D, Coq B, Durand R, Teissier R (2003) J Catal 219:167–175Roelofs JCAA, Lendsveld DJ, van Dillen AJ, de Jong P (2001) J Catal 203:184–191Climent MJ, Corma A, Iborra S, Velty A (2002) Green Chem 4:474–480Hora L, Kelbichova V, Kikhtyanin O, Bortnovskly O, Kubicka D (2014) Catal Today 223:138–147Coluccia S, Tench AJ, Segall RL (1979) J Chem Soc Faraday Trans 1(75):1769–1779Rodriguez I, Sastre G, Corma A, Iborra S (1999) J Catal 183:14–23Xu C, Gao Y, Liu X, Xin R, Wang Z (2013) RSC Adv 3:793–80

    Heteropolycompounds as catalysts for biomass product transformations

    Full text link
    [EN] In the present review we show a variety of biomass product transformations through catalysis by both bulk and supported heteropolycompounds. The biomass sources considered include carbohydrates, oils and fats, and terpenes as main starting material groups. The products obtained and their applications are presented.We thank CONICET (PIP 003), Agencia Nacional de Promocion Cientifica y Tecnologica (Argentina) (PICT 0406), and Universidad Nacional de La Plata for financial support. GPR and HJT are members of CONICET. MJC and SI thank to Spanish Government-MINECO through Consolider Ingenio 2010-Multicat project for financial support.Sanchez, LM.; Thomas, HJ.; Climent Olmedo, MJ.; Romanelli, GP.; Iborra Chornet, S. (2016). Heteropolycompounds as catalysts for biomass product transformations. Catalysis Reviews: Science and Engineering. 58(4):497-586. doi:10.1080/01614940.2016.1248721S49758658

    Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols

    Full text link
    This is the peer reviewed version of the following article: A. Garcia-Ortiz, K. S. Arias, M. J. Climent, A. Corma, S. Iborra, ChemSusChem 2020, 13, 707, which has been published in final form at https://doi.org/10.1002/cssc.201903496. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Biomass-derived surfactants with very good surfacetension and criticalmicellar concentration properties wereobtained by conversion of methyl levulinate into methyl 4-alkoxypenta- noates through reductive etherification with aliphatic alcohols. Amongdifferent bifunctional acid/metal catalysts bestresults were obtained with Pd on carbon bearing acid sites. The reac- tion occurred through the formation of an enol ether inter- mediate followed by hydrogenation. Pd in high-density planes was the active hydrogenation species, and an optimum crystal size was found to be approximately 10 nm. The reductive etherification with aliphatic alcohols was extended to other aliphatic and cyclic ketonesand aldehydes obtained from bio- mass, and excellent results were obtained on supported Pd catalysts with the reaction route and experimentalconditions described in this work.The research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa" Excellence Program (SEV-2016-0683) and the PGC2018-097277-B-100 (MCIU/AEI/FEDER, UE) project. The authors also thank the Microscopy Service of UPV for kind help on measurement. A.G.-O. thanks "Severo Ochoa" Program (SEV-2016-0683) for a predoctoral fellowship.Garcia-Ortiz, A.; Arias-Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2020). Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols. ChemSusChem. 13(4):707-714. https://doi.org/10.1002/cssc.201903496S707714134Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492bYan, L., Yao, Q., & Fu, Y. (2017). Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chemistry, 19(23), 5527-5547. doi:10.1039/c7gc02503cVidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113Mascal, M., & Nikitin, E. B. (2010). High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via5-(chloromethyl)furfural. Green Chem., 12(3), 370-373. doi:10.1039/b918922jBrasholz, M., von Känel, K., Hornung, C. H., Saubern, S., & Tsanaktsidis, J. (2011). Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chemistry, 13(5), 1114. doi:10.1039/c1gc15107jW. A.Frey J. W.Brown J. P.Kelly M. E.Carroll P. C.Guion(Georgia Pacific LLC Atlanta GA) US20150052806A1 2015.V.Lopez-Fernandez L.Arribas M.Frades A.Ruiz WO2020016290A1 2020.L. T.Banner J. A.Bohlmann B. J.Brazeau T.-J.Han P.Loucks S. N.Shriver S.Zhou(Cargill Inc Wayzata MN) US8962883B2 2015.Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2013). Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 15(3), 584. doi:10.1039/c3gc37065hTulchinsky, M. L., & Briggs, J. R. (2016). One-Pot Synthesis of Alkyl 4-Alkoxypentanoates by Esterification and Reductive Etherification of Levulinic Acid in Alcoholic Solutions. ACS Sustainable Chemistry & Engineering, 4(8), 4089-4093. doi:10.1021/acssuschemeng.6b00173Vidal, J. D., Climent, M. J., Corma, A., Concepcion, D. P., & Iborra, S. (2016). One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem, 10(1), 119-128. doi:10.1002/cssc.201601333Foley, P., Kermanshahi pour, A., Beach, E. S., & Zimmerman, J. B. (2012). Derivation and synthesis of renewable surfactants. Chem. Soc. Rev., 41(4), 1499-1518. doi:10.1039/c1cs15217cGarcia-Ortiz, A., Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2018). Cover Feature: One-Pot Synthesis of Biomass-Derived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts (ChemSusChem 17/2018). ChemSusChem, 11(17), 2838-2838. doi:10.1002/cssc.201801921Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2013). Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem, 7(1), 210-220. doi:10.1002/cssc.201300531Climent, M. J., Corma, A., Iborra, S., Martínez-Silvestre, S., & Velty, A. (2013). Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst. ChemSusChem, 6(7), 1224-1234. doi:10.1002/cssc.201300146J. Verhoef, M., J. Creyghton, E., & A. Peters, J. (1997). Reductive etherification of substituted cyclohexanones with secondary alcohols catalysed by zeolite H-MCM-22. Chemical Communications, (20), 1989. doi:10.1039/a705196dGooßen, L., & Linder, C. (2006). Catalytic Reductive Etherification of Ketones with Alcohols at Ambient Hydrogen Pressure: A Practical, Waste-Minimized Synthesis of Dialkyl Ethers. Synlett, 2006(20), 3489-3491. doi:10.1055/s-2006-956484Bethmont, V., Fache, F., & Lemaire, M. (1995). An alternative catalytic method to the Williamson’s synthesis of ethers. Tetrahedron Letters, 36(24), 4235-4236. doi:10.1016/0040-4039(95)00730-zShi, Y., Dayoub, W., Chen, G.-R., & Lemaire, M. (2010). Selective synthesis of 1-O-alkyl glycerol and diglycerol ethers by reductive alkylation of alcohols. Green Chemistry, 12(12), 2189. doi:10.1039/c0gc00202jSutter, M., Dayoub, W., Métay, E., Raoul, Y., & Lemaire, M. (2012). Selective Synthesis of 1-O-Alkyl(poly)glycerol Ethers by Catalytic Reductive Alkylation of Carboxylic Acids with a Recyclable Catalytic System. ChemSusChem, 5(12), 2397-2409. doi:10.1002/cssc.201200447Fujii, Y., Furugaki, H., Tamura, E., Yano, S., & Kita, K. (2005). A Convenient Catalytic Method for the Synthesis of Ethers from Alcohols and Carbonyl Compounds. Bulletin of the Chemical Society of Japan, 78(3), 456-463. doi:10.1246/bcsj.78.456HOWARD, W. L., & BROWN, J. H. (1961). Hydrogenolysis of Ketals. The Journal of Organic Chemistry, 26(4), 1026-1028. doi:10.1021/jo01063a010Jadhav, D., Grippo, A. M., Shylesh, S., Gokhale, A. A., Redshaw, J., & Bell, A. T. (2017). Production of Biomass-Based Automotive Lubricants by Reductive Etherification. ChemSusChem, 10(11), 2527-2533. doi:10.1002/cssc.201700427Fache, F., Bethmont, V., Jacquot, L., & Lemaire, M. (1996). Reductive O - and N -alkylations. Alternative catalytic methods to nucleophilic substitution. Recueil des Travaux Chimiques des Pays-Bas, 115(4), 231-238. doi:10.1002/recl.19961150408Millman, W. S., & Smith, G. V. (1977). ROLE OF ACETAL FORMATION IN METAL CATALYZED HYDROGENATION AND EXCHANGE OF CINNAMALDEHYDE. Catalysis in Organic Syntheses 1977, 33-65. doi:10.1016/b978-0-12-650550-4.50008-0Bethmont, V., Montassier, C., & Marecot, P. (2000). Ether synthesis from alcohol and aldehyde in the presence of hydrogen and palladium deposited on charcoal. Journal of Molecular Catalysis A: Chemical, 152(1-2), 133-140. doi:10.1016/s1381-1169(99)00272-1García-Ortiz, A., Vidal, J. D., Climent, M. J., Concepción, P., Corma, A., & Iborra, S. (2019). Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry & Engineering, 7(6), 6243-6250. doi:10.1021/acssuschemeng.8b06631Mastalir, Á., Rác, B., Király, Z., & Molnár, Á. (2007). In situ generation of Pd nanoparticles in MCM-41 and catalytic applications in liquid-phase alkyne hydrogenations. Journal of Molecular Catalysis A: Chemical, 264(1-2), 170-178. doi:10.1016/j.molcata.2006.09.021Cabiac, A., Cacciaguerra, T., Trens, P., Durand, R., Delahay, G., Medevielle, A., … Coq, B. (2008). Influence of textural properties of activated carbons on Pd/carbon catalysts synthesis for cinnamaldehyde hydrogenation. Applied Catalysis A: General, 340(2), 229-235. doi:10.1016/j.apcata.2008.02.018YIN, F., JI, S., WU, P., ZHAO, F., & LI, C. (2008). Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane. Journal of Catalysis, 257(1), 108-116. doi:10.1016/j.jcat.2008.04.010Strobel, R. (2004). Flame spray synthesis of Pd/Al2O3 catalysts and their behavior in enantioselective hydrogenation. Journal of Catalysis, 222(2), 307-314. doi:10.1016/j.jcat.2003.10.01

    Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation

    Full text link
    [EN] Valuable chiral alcs. have been obtained from racemic mixts. with an integrated heterogeneous chemoenzymic catalyst in a two consecutive fixed catalytic bed continuous reactor system. In the first bed the racemic mixt. of alcs. is oxidized to the prochiral ketone with a Zr-Beta zeolite and using acetone as the hydrogen acceptor. In the second catalytic bed the prochiral ketone is stereoselectively reduced with an alc. dehydrogenase (ADH) immobilized on a two dimensional (2D) zeolite. In this process, the alc. (isopropanol) formed by the redn. of acetone in the first step reduces the cofactor in the second step, and the full reaction cycle is in this way internally closed with 100% atom economy. A conversion of about 95% with ~100% selectivity to either the (R) or the (S) alc. has been obtained for a variety of racemic mixts. of alcsThe research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa" Excellence Programme (SEV-2016-0683) and the PGC2018-097277-B-100(MCIU/AEI/FEDER, UE) project. J. M. C. thanks to Universitat Politecnica de Valencia for a predoctoral fellowship.Carceller-Carceller, JM.; Mifsud, M.; Climent Olmedo, MJ.; Iborra Chornet, S.; Corma Canós, A. (2020). Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation. Green Chemistry. 22(9):2767-2777. https://doi.org/10.1039/c9gc04127cS27672777229R. A. Sheldon , Chirotechnology: Industrial synthesis of optically active compounds , Marcel Dekker, Inc. , New York , 1993Okamoto, Y., & Ikai, T. (2008). Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 37(12), 2593. doi:10.1039/b808881kXie, R., Chu, L.-Y., & Deng, J.-G. (2008). Membranes and membrane processes for chiral resolution. Chemical Society Reviews, 37(6), 1243. doi:10.1039/b713350bNie, Y., Xu, Y., Qing Mu, X., Tang, Y., Jiang, J., & Hao Sun, Z. (2005). High-yield conversion of (R)-2-octanol from the corresponding racemate by stereoinversion using Candida rugosa. Biotechnology Letters, 27(1), 23-26. doi:10.1007/s10529-004-6310-1Liese, A., Zelinski, T., Kula, M.-R., Kierkels, H., Karutz, M., Kragl, U., & Wandrey, C. (1998). A novel reactor concept for the enzymatic reduction of poorly soluble ketones. Journal of Molecular Catalysis B: Enzymatic, 4(1-2), 91-99. doi:10.1016/s1381-1177(97)00025-8Pociecha, D., Glogarová, M., Gorecka, E., & Mieczkowski, J. (2000). Behavior of frustrated phase in ferroelectric and antiferroelectric liquid crystalline mixtures. Physical Review E, 61(6), 6674-6677. doi:10.1103/physreve.61.6674Xue, L., Zhou, D.-J., Tang, L., Ji, X.-F., Huang, M.-Y., & Jiang, Y.-Y. (2004). The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer–metal complex, silica-supported chitosan–cobalt complex. Reactive and Functional Polymers, 58(2), 117-121. doi:10.1016/j.reactfunctpolym.2003.10.003Wu, Z., Li, X., Li, F., Yue, H., He, C., Xie, F., & Wang, Z. (2014). Enantioselective transesterification of (R,S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Adv., 4(64), 33998-34002. doi:10.1039/c4ra04431bRachwalski, M., Vermue, N., & Rutjes, F. P. J. T. (2013). Recent advances in enzymatic and chemical deracemisation of racemic compounds. Chemical Society Reviews, 42(24), 9268. doi:10.1039/c3cs60175gBakker, M., Spruijt, A. ., van Rantwijk, F., & Sheldon, R. . (2000). Highly enantioselective aminoacylase-catalyzed transesterification of secondary alcohols. Tetrahedron: Asymmetry, 11(8), 1801-1808. doi:10.1016/s0957-4166(00)00118-xKim, C., Lee, J., Cho, J., Oh, Y., Choi, Y. K., Choi, E., … Kim, M.-J. (2013). Kinetic and Dynamic Kinetic Resolution of Secondary Alcohols with Ionic-Surfactant-Coated Burkholderia cepacia Lipase: Substrate Scope and Enantioselectivity. The Journal of Organic Chemistry, 78(6), 2571-2578. doi:10.1021/jo3027627Lee, J. H., Han, K., Kim, M., & Park, J. (2010). Chemoenzymatic Dynamic Kinetic Resolution of Alcohols and Amines. European Journal of Organic Chemistry, 2010(6), 999-1015. doi:10.1002/ejoc.200900935Parvulescu, A., Janssens, J., Vanderleyden, J., & De Vos, D. (2010). Heterogeneous Catalysts for Racemization and Dynamic Kinetic Resolution of Amines and Secondary Alcohols. Topics in Catalysis, 53(13-14), 931-941. doi:10.1007/s11244-010-9512-xVerho, O., & Bäckvall, J.-E. (2015). Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines. Journal of the American Chemical Society, 137(12), 3996-4009. doi:10.1021/jacs.5b01031Gruber, C. C., Lavandera, I., Faber, K., & Kroutil, W. (2006). From a Racemate to a Single Enantiomer: Deracemization by Stereoinversion. Advanced Synthesis & Catalysis, 348(14), 1789-1805. doi:10.1002/adsc.200606158Voss, C. V., Gruber, C. C., Faber, K., Knaus, T., Macheroux, P., & Kroutil, W. (2008). Orchestration of Concurrent Oxidation and Reduction Cycles for Stereoinversion and Deracemisation of sec-Alcohols. Journal of the American Chemical Society, 130(42), 13969-13972. doi:10.1021/ja804816aDíaz-Rodríguez, A., Ríos-Lombardía, N., Sattler, J. H., Lavandera, I., Gotor-Fernández, V., Kroutil, W., & Gotor, V. (2015). Deracemisation of profenol core by combining laccase/TEMPO-mediated oxidation and alcohol dehydrogenase-catalysed dynamic kinetic resolution. Catalysis Science & Technology, 5(3), 1443-1446. doi:10.1039/c4cy01351dKędziora, K., Díaz-Rodríguez, A., Lavandera, I., Gotor-Fernández, V., & Gotor, V. (2014). Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives. Green Chemistry, 16(5), 2448. doi:10.1039/c4gc00066hLiardo, E., Ríos-Lombardía, N., Morís, F., González-Sabín, J., & Rebolledo, F. (2018). A Straightforward Deracemization of sec -Alcohols Combining Organocatalytic Oxidation and Biocatalytic Reduction. European Journal of Organic Chemistry, 2018(23), 3031-3035. doi:10.1002/ejoc.201800569Méndez-Sánchez, D., Mangas-Sánchez, J., Lavandera, I., Gotor, V., & Gotor-Fernández, V. (2015). Chemoenzymatic Deracemization of Secondary Alcohols by using a TEMPO-Iodine-Alcohol Dehydrogenase System. ChemCatChem, 7(24), 4016-4020. doi:10.1002/cctc.201500816Gröger, H., & Hummel, W. (2014). Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Current Opinion in Chemical Biology, 19, 171-179. doi:10.1016/j.cbpa.2014.03.002Corma, A. (2016). Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications. Angewandte Chemie International Edition, 55(21), 6112-6113. doi:10.1002/anie.201601231Kunkeler, P. J., Zuurdeeg, B. J., van der Waal, J. C., van Bokhoven, J. A., Koningsberger, D. C., & van Bekkum, H. (1998). Zeolite Beta: The Relationship between Calcination Procedure, Aluminum Configuration, and Lewis Acidity. Journal of Catalysis, 180(2), 234-244. doi:10.1006/jcat.1998.2273Van der Waal, J. C., Creyghton, E. J., Kunkeler, P. J., Tan, K., & van Bekkum, H. (1997). Topics In Catalysis, 4(3/4), 261-268. doi:10.1023/a:1019160827175Creyghton, E. ., Ganeshie, S. ., Downing, R. ., & van Bekkum, H. (1997). Stereoselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalysed by zeolite BEA1Communication presented at the First Francqui Colloquium, Brussels, 19–20 February 1996.1. Journal of Molecular Catalysis A: Chemical, 115(3), 457-472. doi:10.1016/s1381-1169(96)00351-2Van der Waal, J. C., Tan, K., & van Bekkum, H. (1996). Zeolite titanium beta: a selective and water resistant catalyst in Meerwein-Ponndorf-Verley-Oppenauer reactions. Catalysis Letters, 41(1-2), 63-67. doi:10.1007/bf00811714Corma, A., Domine, M. E., Nemeth, L., & Valencia, S. (2002). Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein−Ponndorf−Verley Reaction). Journal of the American Chemical Society, 124(13), 3194-3195. doi:10.1021/ja012297mCorma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9Boronat, M., Corma, A., & Renz, M. (2006). Mechanism of the Meerwein−Ponndorf−Verley−Oppenauer (MPVO) Redox Equilibrium on Sn− and Zr−Beta Zeolite Catalysts. The Journal of Physical Chemistry B, 110(42), 21168-21174. doi:10.1021/jp063249xBoronat, M., Corma, A., Renz, M., & Viruela, P. M. (2006). Predicting the Activity of Single Isolated Lewis Acid Sites in Solid Catalysts. Chemistry - A European Journal, 12(27), 7067-7077. doi:10.1002/chem.200600478Hussain, W., Pollard, D. J., Truppo, M., & Lye, G. J. (2008). Enzymatic ketone reductions with co-factor recycling: Improved reactions with ionic liquid co-solvents. Journal of Molecular Catalysis B: Enzymatic, 55(1-2), 19-29. doi:10.1016/j.molcatb.2008.01.006Tschaen, D. M., Abramson, L., Cai, D., Desmond, R., Dolling, U.-H., Frey, L., … Verhoeven, T. R. (1995). Asymmetric Synthesis of MK-0499. The Journal of Organic Chemistry, 60(14), 4324-4330. doi:10.1021/jo00119a008KEINAN, E., SETH, K. K., & LAMED, R. (1987). Synthetic Applications of Alcohol-Dehydrogenase from Thermoanaerobium brockii. Annals of the New York Academy of Sciences, 501(1 Enzyme Engine), 130-149. doi:10.1111/j.1749-6632.1987.tb45698.xHummel, W. (1990). Reduction of acetophenone to R(+)-phenylethanol by a new alcohol dehydrogenase from Lactobacillus kefir. Applied Microbiology and Biotechnology, 34(1). doi:10.1007/bf00170916Temiño, D. M.-R. D., Hartmeier, W., & Ansorge-Schumacher, M. B. (2005). Entrapment of the alcohol dehydrogenase from Lactobacillus kefir in polyvinyl alcohol for the synthesis of chiral hydrophobic alcohols in organic solvents. Enzyme and Microbial Technology, 36(1), 3-9. doi:10.1016/j.enzmictec.2004.01.013L. Cao , Carrier-bound Immobilized Enzymes: Principles, Application and Design , Wiley-VCH , 2006K. Faber , Biotransformations in Organic Chemistry , Springer B , New York , 1996Benítez-Mateos, A. I., Contente, M. L., Velasco-Lozano, S., Paradisi, F., & López-Gallego, F. (2018). Self-Sufficient Flow-Biocatalysis by Coimmobilization of Pyridoxal 5′-Phosphate and ω-Transaminases onto Porous Carriers. ACS Sustainable Chemistry & Engineering, 6(10), 13151-13159. doi:10.1021/acssuschemeng.8b02672Velasco‐Lozano, S., Benítez‐Mateos, A. I., & López‐Gallego, F. (2016). Co‐immobilized Phosphorylated Cofactors and Enzymes as Self‐Sufficient Heterogeneous Biocatalysts for Chemical Processes. Angewandte Chemie International Edition, 56(3), 771-775. doi:10.1002/anie.201609758DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42(15), 6437. doi:10.1039/c3cs35506cBenítez-Mateos, A. I., San Sebastian, E., Ríos-Lombardía, N., Morís, F., González-Sabín, J., & López-Gallego, F. (2017). Asymmetric Reduction of Prochiral Ketones by Using Self-Sufficient Heterogeneous Biocatalysts Based on NADPH-Dependent Ketoreductases. Chemistry - A European Journal, 23(66), 16843-16852. doi:10.1002/chem.201703475Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Guisán, J. M., Fernández-Lafuente, R., & Mateo, C. (2006). Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 125(1), 85-94. doi:10.1016/j.jbiotec.2006.01.028Xu, S., Lu, Y., Jiang, Z., & Wu, H. (2006). Silica nanotubes-doped alginate gel for yeast alcohol dehydrogenase immobilization. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 68-73. doi:10.1016/j.molcatb.2006.06.026Shakir, M., Nasir, Z., Khan, M. S., Lutfullah, Alam, M. F., Younus, H., & Al-Resayes, S. I. (2015). Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support. International Journal of Biological Macromolecules, 72, 1196-1204. doi:10.1016/j.ijbiomac.2014.10.045Jiang, X.-P., Lu, T.-T., Liu, C.-H., Ling, X.-M., Zhuang, M.-Y., Zhang, J.-X., & Zhang, Y.-W. (2016). Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid. International Journal of Biological Macromolecules, 88, 9-17. doi:10.1016/j.ijbiomac.2016.03.031Alam, M. F., Laskar, A. A., Zubair, M., Baig, U., & Younus, H. (2015). Immobilization of yeast alcohol dehydrogenase on polyaniline coated silver nanoparticles formed by green synthesis. Journal of Molecular Catalysis B: Enzymatic, 119, 78-84. doi:10.1016/j.molcatb.2015.06.004Liu, L., Yu, J., & Chen, X. (2015). Enhanced Stability and Reusability of Alcohol Dehydrogenase Covalently Immobilized on Magnetic Graphene Oxide Nanocomposites. Journal of Nanoscience and Nanotechnology, 15(2), 1213-1220. doi:10.1166/jnn.2015.9024Dreifke, M., Brieler, F. J., & Fröba, M. (2017). Immobilization of Alcohol Dehydrogenase from E. coli onto Mesoporous Silica for Application as a Cofactor Recycling System. ChemCatChem, 9(7), 1197-1210. doi:10.1002/cctc.201601288Ghannadi, S., Abdizadeh, H., Miroliaei, M., & Saboury, A. A. (2019). Immobilization of Alcohol Dehydrogenase on Titania Nanoparticles To Enhance Enzyme Stability and Remove Substrate Inhibition in the Reaction of Formaldehyde to Methanol. Industrial & Engineering Chemistry Research, 58(23), 9844-9854. doi:10.1021/acs.iecr.9b01370Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121Margarit, V. J., Díaz-Rey, M. R., Navarro, M. T., Martínez, C., & Corma, A. (2018). Direct Synthesis of Nano-Ferrierite along the 10-Ring-Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie International Edition, 57(13), 3459-3463. doi:10.1002/anie.201711418Luo, H. Y., Michaelis, V. K., Hodges, S., Griffin, R. G., & Román-Leshkov, Y. (2015). One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 6(11), 6320-6324. doi:10.1039/c5sc01912eCorma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:13.0.co;2-wSheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev., 42(15), 6223-6235. doi:10.1039/c3cs60075kThiel, D., Doknić, D., & Deska, J. (2014). Enzymatic aerobic ring rearrangement of optically active furylcarbinols. Nature Communications, 5(1). doi:10.1038/ncomms6278Kniemeyer, O., & Heider, J. (2001). ( S )-1-Phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Archives of Microbiology, 176(1-2), 129-135. doi:10.1007/s002030100303Corma, A., Fornés, V., Jordá, J. L., Rey, F., Fernandez-Lafuente, R., Guisan, J. M., & Mateo, C. (2001). Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials. Chemical Communications, (5), 419-420. doi:10.1039/b009232kCamblor, M. A., Corma, A., Mifsud, A., Pérez-Pariente, J., & Valencia, S. (1997). Synthesis of nanocrystalline zeolite beta in the absence of alkali metal cations. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 341-348. doi:10.1016/s0167-2991(97)80574-5Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288wZHU, Y., CHUAH, G., & JAENICKE, S. (2004). Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. Journal of Catalysis, 227(1), 1-10. doi:10.1016/j.jcat.2004.05.037Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., … Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. doi:10.1016/0003-2697(85)90442-7Cappello, V., Marchetti, L., Parlanti, P., Landi, S., Tonazzini, I., Cecchini, M., … Gemmi, M. (2016). Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Scientific Reports, 6(1). doi:10.1038/s41598-016-0001-8Perego, C. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52(2-3), 133-145. doi:10.1016/s0920-5861(99)00071-1Álvarez López, C. (2014). Determinación del punto isoeléctrico de las proteínas presentes en cuatro fuentes foliares: yuca (Manihot esculenta Crantz) variedades verónica y tai, jatropha (Jatropha curcas L.) y gmelina (Gmelina arbórea). Prospectiva, 12(1), 30. doi:10.15665/rp.v12i1.14

    Chemoenzymatic Synthesis of 5-Hydroxymethylfurfural (HMF) Derived Plasticizers by Coupling HMF Reduction with Enzymatic Esterification

    Full text link
    This is the peer reviewed version of the following article: K. S. Arias, J. M. Carceller, M. J. Climent, A. Corma, S. Iborra, ChemSusChem 2020, 13, 1864, which has been published in final form at https://doi.org/10.1002/cssc.201903123. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Biobased plasticizers, as substitutes for phthalates, have been synthesized from 5-hydroxymethylfurfural (HMF) and carboxylic acids (or esters) through a chemoenzymatic cascade process that involves as its first step the reduction of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan (BHMF), followed by the esterification of BHMF with carboxylic acids (or esters) by using a supported lipase (Novozym 435). The reduction of HMF into BHMF is performed by using monodisperse metallic Co nanoparticles with a thin carbon shell (Co@C) with high activity and selectivity. After optimization of reaction conditions (temperature, hydrogen pressure, and solvent), it is possible to achieve 97% conversion of HMF with 99% selectivity to BHMF after 2 h reaction time. The reduction of HMF and esterification of BHMF using carboxylic acids or vinyl esters as acyl donors by lipase are optimized separately in batch and in fixed-bed continuous reactors. The coupling of two flow reactors (for reduction and subsequent esterification) working under optimized reaction conditions affords the diesters of BHMF in roughly 90% yield with no loss of activity during 60 h of operation.The research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa" Excellence Programme (SEV-2016-0683) and the PGC2018-097277-B-100 (MCIU/AEI/FEDER, UE) project. The authors also thank the Microscopy Service of UPV for kind help with measurements. JMC thanks UPV for a predoctoral fellowship.Arias-Carrascal, KS.; Carceller-Carceller, JM.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2020). Chemoenzymatic Synthesis of 5-Hydroxymethylfurfural (HMF) Derived Plasticizers by Coupling HMF Reduction with Enzymatic Esterification. ChemSusChem. 13(7):1864-1875. https://doi.org/10.1002/cssc.201903123S18641875137Kucherov, F. A., Romashov, L. V., Galkin, K. I., & Ananikov, V. P. (2018). Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. ACS Sustainable Chemistry & Engineering, 6(7), 8064-8092. doi:10.1021/acssuschemeng.8b00971Garcia-Ortiz, A., Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2018). One-Pot Synthesis of Biomass-Derived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts. ChemSusChem, 11(17), 2870-2880. doi:10.1002/cssc.201801132Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2015). Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy & Environmental Science, 8(1), 317-331. doi:10.1039/c4ee03194fGarcía-Ortiz, A., Vidal, J. D., Climent, M. J., Concepción, P., Corma, A., & Iborra, S. (2019). Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry & Engineering, 7(6), 6243-6250. doi:10.1021/acssuschemeng.8b06631Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2016). Chemicals from Biomass: Synthesis of Biologically Active Furanochalcones by Claisen–Schmidt Condensation of Biomass-Derived 5-hydroxymethylfurfural (HMF) with Acetophenones. Topics in Catalysis, 59(13-14), 1257-1265. doi:10.1007/s11244-016-0646-3Hu, L., Xu, J., Zhou, S., He, A., Tang, X., Lin, L., … Zhao, Y. (2018). Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran. ACS Catalysis, 8(4), 2959-2980. doi:10.1021/acscatal.7b03530Cottier, L., Descotes, G., & Soro, Y. (2003). Heteromacrocycles from Ring-Closing Metathesis of Unsaturated Furanic Ethers. Synthetic Communications, 33(24), 4285-4295. doi:10.1081/scc-120026858Gelmini, A., Albonetti, S., Cavani, F., Cesari, C., Lolli, A., Zanotti, V., & Mazzoni, R. (2016). Oxidant free one-pot transformation of bio-based 2,5-bis-hydroxymethylfuran into α-6-hydroxy-6-methyl-4-enyl-2H-pyran-3-one in water. Applied Catalysis B: Environmental, 180, 38-43. doi:10.1016/j.apcatb.2015.06.003Hu, L., Lin, L., & Liu, S. (2014). Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran. Industrial & Engineering Chemistry Research, 53(24), 9969-9978. doi:10.1021/ie5013807Lăcătuş, M. A., Bencze, L. C., Toşa, M. I., Paizs, C., & Irimie, F.-D. (2018). Eco-Friendly Enzymatic Production of 2,5-Bis(hydroxymethyl)furan Fatty Acid Diesters, Potential Biodiesel Additives. ACS Sustainable Chemistry & Engineering, 6(9), 11353-11359. doi:10.1021/acssuschemeng.8b01206L.Stensrud K.Wicklund Pat. WO 2016/028845 A1 2016.Hu, L., Lin, L., Wu, Z., Zhou, S., & Liu, S. (2017). Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 74, 230-257. doi:10.1016/j.rser.2017.02.042Chen, S., Wojcieszak, R., Dumeignil, F., Marceau, E., & Royer, S. (2018). How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chemical Reviews, 118(22), 11023-11117. doi:10.1021/acs.chemrev.8b00134Zhu, Y., Kong, X., Zheng, H., Ding, G., Zhu, Y., & Li, Y.-W. (2015). Efficient synthesis of 2,5-dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts. Catalysis Science & Technology, 5(8), 4208-4217. doi:10.1039/c5cy00700cLi, X.-L., Zhang, K., Chen, S.-Y., Li, C., Li, F., Xu, H.-J., & Fu, Y. (2018). A cobalt catalyst for reductive etherification of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl)furan under mild conditions. Green Chemistry, 20(5), 1095-1105. doi:10.1039/c7gc03072jLiu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014De la Peña O′Shea, V. A., de la Piscina, P. R., Homs, N., Aromí, G., & Fierro, J. L. G. (2009). Development of Hexagonal Closed-Packed Cobalt Nanoparticles Stable at High Temperature. Chemistry of Materials, 21(23), 5637-5643. doi:10.1021/cm900845hHadjiev, V. G., Iliev, M. N., & Vergilov, I. V. (1988). The Raman spectra of Co3O4. Journal of Physics C: Solid State Physics, 21(7), L199-L201. doi:10.1088/0022-3719/21/7/007Ferrari, A. C., & Robertson, J. (2004). Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1824), 2477-2512. doi:10.1098/rsta.2004.1452Wang, Y., Alsmeyer, D. C., & McCreery, R. L. (1990). Raman spectroscopy of carbon materials: structural basis of observed spectra. Chemistry of Materials, 2(5), 557-563. doi:10.1021/cm00011a018Zhong, W., Liu, H., Bai, C., Liao, S., & Li, Y. (2015). Base-Free Oxidation of Alcohols to Esters at Room Temperature and Atmospheric Conditions using Nanoscale Co-Based Catalysts. ACS Catalysis, 5(3), 1850-1856. doi:10.1021/cs502101cWesterhaus, F. A., Jagadeesh, R. V., Wienhöfer, G., Pohl, M.-M., Radnik, J., Surkus, A.-E., … Beller, M. (2013). Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 5(6), 537-543. doi:10.1038/nchem.1645Han, J., Kim, Y.-H., Jang, H.-S., Hwang, S.-Y., Jegal, J., Kim, J. W., & Lee, Y.-S. (2016). Heterogeneous zirconia-supported ruthenium catalyst for highly selective hydrogenation of 5-hydroxymethyl-2-furaldehyde to 2,5-bis(hydroxymethyl)furans in various n-alcohol solvents. RSC Advances, 6(96), 93394-93397. doi:10.1039/c6ra18016gChatterjee, M., Ishizaka, T., & Kawanami, H. (2014). Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach. Green Chem., 16(11), 4734-4739. doi:10.1039/c4gc01127aCliment, M. J., Corma, A., Iborra, S., Martínez-Silvestre, S., & Velty, A. (2013). Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst. ChemSusChem, 6(7), 1224-1234. doi:10.1002/cssc.201300146Climent, M. J., Corma, A., Hamid, S. B. A., Iborra, S., & Mifsud, M. (2006). Chemicals from biomass derived products: synthesis of polyoxyethyleneglycol esters from fatty acid methyl esters with solid basic catalysts. Green Chemistry, 8(6), 524. doi:10.1039/b518082aKrystof, M., Pérez-Sánchez, M., & Domínguez de María, P. (2013). Lipase-Catalyzed (Trans)esterification of 5-Hydroxy- methylfurfural and Separation from HMF Esters using Deep-Eutectic Solvents. ChemSusChem, 6(4), 630-634. doi:10.1002/cssc.201200931Catoni, E., Cernia, E., & Palocci, C. (1996). Different aspects of ‘solvent engineering’ in lipase biocatalysed esterifications. Journal of Molecular Catalysis A: Chemical, 105(1-2), 79-86. doi:10.1016/1381-1169(95)00153-0José, C., Bonetto, R. D., Gambaro, L. A., Torres, M. del P. G., Foresti, M. L., Ferreira, M. L., & Briand, L. E. (2011). Investigation of the causes of deactivation–degradation of the commercial biocatalyst Novozym® 435 in ethanol and ethanol–aqueous media. Journal of Molecular Catalysis B: Enzymatic, 71(3-4), 95-107. doi:10.1016/j.molcatb.2011.04.004Malinowska, B., Majewska, P., Szatkowski, P., Kafarski, P., & Lejczak, B. (2011). Kinetic resolution of (±)-diethyl- and dibenzyl hydroxy(phenyl)methanephosphonates and their acyl derivatives with lipases. Biocatalysis and Biotransformation, 29(6), 271-277. doi:10.3109/10242422.2011.631211Hameršak, Z., Ljubović, E., Merćep, M., Mesić, M., & Šunjić, V. (2001). Chemoenzymatic Synthesis of All Four Cytoxazone Stereoisomers. Synthesis, 2001(13), 1989-1992. doi:10.1055/s-2001-17711Serum, E. M., Sutton, C. A., Renner, A. C., Dawn, D., & Sibi, M. P. (2018). New AB type monomers from lignocellulosic biomass. Pure and Applied Chemistry, 91(3), 389-396. doi:10.1515/pac-2018-091

    Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.8b06631"[EN] N-substituted furfuryl amines are an important class of compounds due to their pharmaceutical activities that can be produced by reductive amination of furfuraldehydes derived from biomass. With supported Pd nanoparticles it is possible to obtain high activities and selectivities for the production of secondary amines. CO adsorption monitored by IR shows the importance of the Pd crystal size and crystal face on catalyst activity and selectivity. When using Pd on carbon the amount of unsaturated Pd sites is very much enhanced with the corresponding increase in selectivity. The role of carbon deposition on metal terraces on catalytic selectivity is discussed. The optimized catalyst has been successfully applied in the reductive amination of 5-hydroxymethylfurfural with different amines and ammonia as well as in the one-pot reductive amination starting from nitrobenzene instead of aniline, giving the different N-substituted-5-(hydroxymethyl)-2-furfuryl amines with excellent activity and selectivity.Spanish MICINN Project (CTQ-2015-67592-P) and Severo Ochoa Program (SEV-2016-0683) are gratefully acknowledged. AGO thanks Severo Ochoa Program for predoctoral fellowships.Garcia-Ortiz, A.; Vidal, JD.; Climent Olmedo, MJ.; Concepción Heydorn, P.; Corma Canós, A.; Iborra Chornet, S. (2019). Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry & Engineering. 7(6):6243-6250. https://doi.org/10.1021/acssuschemeng.8b06631S624362507

    Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts

    Full text link
    An efficient and selective one-pot two-step method, for the synthesis of quinoxalines by oxidative coupling of vicinal diols with 1,2-phenylenediamine derivatives, has been developed by using gold nanoparticles supported on nanoparticulated ceria (Au/CeO2) or hydrotalcite (Au/HT) as catalysts and air as oxidant, in the absence of any homogeneous base. Reaction kinetics shows that the reaction controlling step is the oxidation of the diol to a-hydroxycarbonyl compound. Furthermore, a one-pot three-step synthesis of 2-methylquinoxaline starting from 1,2-dinitrobenzene and 1,2-propanediol has been success fully carried out with 98% conversion and 83% global yield to the final product.The authors wish to acknowledge the Spanish Ministry of Education and Science for the financial support in the projects Consolider-Ingenio 2010 and CTQ-2011-27550. Generalitat Valenciana is also thanked for funding through the Prometeo program. S.M.S thanks Spanish Ministry of Education and Science for FPI fellowships.Climent Olmedo, MJ.; Corma Canós, A.; Hernández, JC.; Hungría, AB.; Iborra Chornet, S.; Martínez Silvestre, S. (2012). Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. Journal of Catalysis. 292:118-129. https://doi.org/10.1016/j.jcat.2012.05.002S11812929

    Chemoselective Reductive Heterocyclization by Controlling the Binomial Architecture of Metal Particles and Acid-Base Properties of the Support

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [insert ACS Articles on Request author-directed link to Published Work, see http://doi.org/10.1021/acscatal.7b01841[EN] 2,¿1-¿Benzisoxazoles were produced by reductive heterocyclization of 2-¿nitroacylarenes using supported Pt nanoparticles. The reaction involves a cascade process in which the first step is the redn. of the nitro group into hydroxylamine which subsequently cycles to 2,¿1-¿benzisoxazole through the nucleophilic attack to the carbonyl group in 2-¿position. The reaction was performed on Pt¿/C, Pt¿/TiO2 and Pt¿/MgO using hydrogen as reducing agent under mild reaction conditions. Pt¿/MgO was the most active and selective catalyst. The study of the influence of the crystal size of the metal on the activity and selectivity, combined with the reaction mechanism by in situ FTIR spectroscopy of the adsorbed reactant, showed that max. activity and selectivity to the target compd. can be achieved by controlling the architecture of metal particles and acid-¿base properties of the support. The effect of the temp. on the selectivity, the stability of Pt¿/MgO catalyst, and the scope of the reaction were studied. Finally, the reductive cyclization using different metals (Pd and Au) supported on MgO was also performed.Spanish MICINN Project (CTQ-2015-67592-13), Generalitat Valenciana (Prometeo Program), and Severo Ochoa Program are gratefully acknowledged.Martí Montaner, L.; Sánchez, L.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S.; Romanelli, G.; Concepción Heydorn, P. (2017). Chemoselective Reductive Heterocyclization by Controlling the Binomial Architecture of Metal Particles and Acid-Base Properties of the Support. ACS Catalysis. 7(12):8255-8262. https://doi.org/10.1021/acscatal.7b01841S8255826271
    corecore